
www.manaraa.com

Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 409

ISSN No. 0976-5697

A Survey of Database Buffer Cache Management Approaches

Priti M. Tailor
Asst. Prof.: Sutex Bank College of Computer App. &

Science, Amroli,
Surat, Gujarat, India

Prof. Rustom D. Morena
Professor: Department of Computer Science,

Veer Narmad South Gujarat University,
 Surat, Gujarat,India.

Abstract: The focus of this paper is to survey database buffer cache management strategy for various databases. It discusses database buffer
cache management strategy used by various databases like LRU, LFU, Modified LRU, touch count algorithm, in memory database and garbage
collection technique, and their advantages and disadvantages.

Keywords: Database Buffer Cache, Object Oriented Databases, In Memory Databases, Buffer Cache Replacement, Garbage collection.

I. INTRODUCTION

Persistence is the property of an object through which its
existence transcends time and / or space [1]. Classes and
objects of classes in object oriented language can be persisted
in object oriented databases. Each class persisted in object
oriented database has unique class Id. Objects of the class
persisted in object oriented database has unique object
identifier (Object Id). Objects can be fetched whenever objects
are queried.

Fetching objects from hard disk is costlier compared to

RAM. Disk IO can be reduced by keeping frequently used
object memory resident. In their “Five Minute Rule”, Gray and
Putzolu stated “We are willing to pay more for memory
buffers up to a certain point, in order to reduce the cost of disk
arms for a system” [2]. Database Buffer Cache Management is
Key to provide efficient access to data and optimal use of main
memory. A major factor for increasing overall performance is
improving the cache management.

Read latency can be reduced and distinct write operations
can be accumulated using database buffer cache. Database
Buffer Cache reduces physical reads and writes, thus assists to
overcome speed gap between processor and storage devices.
Good use of the buffer can significantly improve the
throughput and response time of any data intensive system [3].

II. LITERATURE SURVEY

Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard
Weikum stated that the algorithm utilized by almost all
commercial systems is known as LRU [2]. Versant [5] and
Gemstone [4] uses LRU for replacing objects in object buffer.
When a new buffer is needed, the LRU policy removes the
page from buffer that has not been accessed for longest time.
LRU buffering was developed originally for patterns of use in
instruction logic and does not always fit well into database
environment.

Theodore Johnson and Dennis Shasha have have proposed
one new algorithm called 2Q and shown comparative study of
2Q, LRU2, LRU, GClock, and 2nd chance [3]. LRU/2 is a self
tuning improvement to LRU. It is better algorithm among
existing strategy but its problem is processor overhead to
implement it. Authors concluded that 2Q seems to behave as
well as LRU/2 in their tests (slightly better usually in fact) can
be implemented in constant time using conventional list

operations rather than in logarithmic time using a priority
queue, and both analysis and experiment suggest it requires
little or no tuning.

P Butterworth and A. Otis, J. Stein discussed Gemstone.
Gemstone is an object server managing large scale repository
of objects. Release 1.0 of Gemstone contained both object-
and page-level caches within the Gem server. Page level cache
uses Least Recently Used algorithm for page replacement.
Object cache uses garbage collection method. For garbage
prevention reach ability information was used. Objects that
have been created during the current transaction and cannot be
accessed transitively from the current state of some object in
the database are temporary. In Release 1.0, reference counting
was used to identify these temporary objects in the object
cache and ensure that they did not migrate to disk. Reference
counting suffers from its inability to identify cycles of
temporary objects [4]. In Release 2.0 the garbage prevention
algorithm was improved to make use of a generation
scavenging algorithm, which in addition to preventing
garbage, aided in maintaining a good working set within the
object cache (In the sense that objects in older generations
have been frequently accessed over a long period of time)
[4].Cache management was altered in Release 2.5 to improve
performance. Previously, Objects retrieved from the database
were often present twice in the caches: once in the page cache
and once in the object cache. Now, object retrieved from the
database are present only in the page cache. The object cache
is used for objects created by the transaction. Garbage
prevention is applied to these objects, preventing temporary
object from migrating to the database [4].

Reiter and Allen proposed a buffer management
algorithm, called the domain separation (DS) algorithm, in
which pages are classified into types, each of which is
separately managed in its associated domain of buffers [6].
When a page of a certain type is needed, a buffer is allocated
from the corresponding domain. If none are available for some
reason, e.g. all the buffers in that domain have I/O in progress;
a buffer is borrowed from another domain. Buffers inside each
domain are managed by the LRU discipline. Reiter suggested
a simple type assignment scheme: assign one domain to each
non-leaf level of B-tree structure, and one to the leaf level
together with the data. Empirical data showed that this DS
algorithm provided 8-10% improvement in throughput when
compared with an LRU algorithm. In his domain separation
algorithm author proposed that the DBA give better hints

www.manaraa.com

Priti M. Tailor et al , International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 409-413

© 2015-19, IJARCS All Rights Reserved 410

about page pools being accessed, separating them into
different buffer pools according to DBA hints gives
performance improvement without increasing overhead to a
great extent.

Chirag A. Shallahamer discussed the history of oracle
buffer cache management. Author also introduced touch count
based data buffer management algorithm to address the
growing size, performance requirements, and complexities of
relational database management systems [7]. Author also
discussed how LRU with touch count is implemented. This
algorithm reduced latch contention. This paper details oracle’s
touch count algorithm, how to monitor its performance, and
how to manage for optimal performance. This paper discusses
five touch-count related instance parameters
_db_percent_hot_default, _db_aging_touch_time,
_db_aging_hot_creiteria, _db_againg_stay_count, and
_db_aging_cool_count.

Ling Feng, Hongjun Lu, and Allan Wong have proposed
data mining based buffer management approach [8]. They
have surveyed six different buffer management schemes like
LRU, CLOCK, GCLOCK, Least Reference Density (LRD),
Frequency based replacement strategy (FBR), LRU-K, and
2Q. LRU-K outperforms other strategies because the former
uses more information about K page references. However, to
track the reference history of each page, a great processor
overhead is incurred. To alleviate the implementation cost, a
new algorithm called 2Q, which behaves as well as LRU/2 but
has constant time overhead is presented. In 2Q limited
knowledge of user access patterns is used, authors proposed a
data mining based buffer management approach, i.e., applying
knowledge discovered from database access history to the
buffer management. The proposed approach discovers
knowledge from database access sequences and uses it to
guide buffer management.

Yair Wiseman, Song Jiang discussed ARC-Adaptive
Replacement Cache captures both "recency" and "frequency"
[9]. They observed that the selecting of the "victim" to be
taken out of the faster memory has been traditionally done for
decades by the LRU algorithm. Then authors discussed
various algorithms like LRU, LFU, LRU-K, 2Q, LRFU with
its pros and corns. Authors proposed ARC.ARC maintained
two linked lists L1 and L2. L1 contains the pages that have
been accessed just once, while L2 contains the pages that have
been accessed at least twice. The allowed operations on L1
and L2 are the same operations that are allowed on an LRU
linked list.

Song Jiang and Xiaodong Zhang proposed a new
algorithm called LIRS [10]. Authors observed that although
LRU replacement policy has been commonly used in the
buffer cache management, it is unable to cope with access
patterns with weak locality. Previous work, such as LRU-K
and 2Q, attempts to enhance LRU capacity by making use of
additional history information of previous block references
other than only the recency information used in LRU. These
algorithms greatly increase complexity and/or cannot
consistently provide performance improvement. Authors
propose an efficient buffer cache replacement policy, called
Low Inter-reference Recency Set (LIRS). LIRS effectively
addresses the limits of LRU by using recency to evaluate

Inter-Reference Recency (IRR) for making a replacement
decision. This is in contrast to what LRU does: directly using
recency to predict next reference timing. At the same time,
LIRS almost retains the same simple assumption of LRU to
predict future access behavior of blocks. Conducting
simulations with a variety of traces and a wide range of cache
sizes, Authors show that LIRS significantly outperforms LRU,
and outperforms other existing replacement algorithms in most
cases. Authors observed “Belady’s anomaly” in 2Q.

Sanjay Ghemawat presents a new storage management
architecture that substantially improves disk performance of a
distributed object-oriented database system [11]. The storage
architecture is built around a large modified object buffer
(MOB) that is stored in primary memory. Author evaluated the
modified object buffer in combination with a number of disk
layout policies that make different tradeoffs between read
performances and write performance. Simulation results and
an analysis of the MOB show that the MOB significantly
improves the write performance of a read- optimized disk
layout. Large numbers of buffer management policies exists
like versant uses object cache, server page cache, and process
memory, Orion and O2 also uses dual buffering. None of them
uses write-optimized scheme.

Indexes are essential components in database systems to
speed up the evaluation of queries. To evaluate a query without
an index structure, the system needs to check through the whole
file to look for the desired object. The system has to perform
sequential scan of all the objects. B + -tree is the way through
which we can perform searching operation faster. A B + -tree
provides an efficient means of storing key/value pairs in sorted
order and allows rapid access and retrieval times, which make
B + -tree an excellent choice when storing large amounts of
sorted information that must be found quickly. A B+ -tree can
handle an arbitrary number of insertions and deletions[16].

III. LITERATURE SURVEY FINDINGS

LRU is very simple algorithm to implement with very less
complexity and overhead. Most of the database management
system uses LRU or variant of LRU as database buffer cache
replacement algorithm. There are many variants of LRU like
LRU2, 2Q, LIRS, LRU midpoint insertion with touch count,
etc. LRU2 provides better performance than LRU but increases
processor overhead and have logarithmic complexity. 2Q gives
an improvement of 5-10% in hit ratio over LRU for a wide
variety of applications and buffer sizes and never damaging.
2Q out performs LRU/2 with less overhead but have “Belady’s
anomaly” problem and does not provide consistent
performance. LIRS involved too much book keeping which
will incur heavy performance penalties. LRU midpoint
insertion with touch count is good combination of recency and
frequency based algorithm. Optimally usable techniques
include LRU, LFU, Modified LRU, LRU with touch count, In
memory database, and Garbage collection techniques.

IV. DATABASE BUFFER CACHE MANAGEMENT
STRATEGIES

Due to the higher cost of fetching data from disk than from
RAM, most database management systems (DBMSs) use a
main-memory area as a buffer to reduce disk accesses. Caching
means to store content generated during the request-response
cycle and reuse it when responding to similar requests. Many

www.manaraa.com

Priti M. Tailor et al , International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 409-413

© 2015-19, IJARCS All Rights Reserved 411

types of database buffer cache management strategies exist.
Some of them are discussed in this paper.

A. LRU
Gemstone and Versant uses LRU for replacing object in

object buffer. Oracle also used standard LRU for database
buffer cache replacement. It is recency based algorithm. Any
time buffer was touched or brought into the cache, it was
promoted to the head of the LRU. In LRU When a new object
is needed, the object in the buffer that has not been accessed
for the longest time is replaced.

DB4Objects uses B trees to manage free slots.
FreeByAddress and FreeBySize two trees have been
maintained in order to get free slot of desired size. They
contain nodes for each free slot. Whenever free space is
required any of the two trees can be traversed. Whenever the
space is allocated the free space node is removed from both
trees. Internally it uses a single LRU for managing the cache.
If no free slot of required size is found then block at the tail of
the LRU list is freed. If the block at the end of LRU list is
dirty then it is written back to disk and then the space for it is
freed.

Until the early 80’s, the least recently used buffer
replacement algorithm (replace the page that was least recently
accessed or used) was the algorithm of choice in nearly all
cases. Indeed, the theoretical community blessed it by showing
that LRU never replaces more than a factor B as many
elements as an optimal clairvoyant algorithm (where B is the
size of the buffer) [12].

Factors this large can heavily influence the behavior of a
database system, however. Furthermore, database systems
usually have access patterns in which LRU performs poorly, as
noted by [13], [14] and [15]. As a result, there has been
considerable interest in buffer management algorithms that
perform well in a database system.

B. LFU
LFU, MFU etc. are the example of frequency based

algorithm. Frequency based page replacement algorithms uses
page reference count. Whenever a page is referred its reference
count is incremented. The object will be replaced based on
value of reference count. LFU replaces the page with
minimum reference count.

C. Modified LRU
1) Avoid Damage due to full table scan

Blocks brought into the cache from a single block read are
placed at the head of the LRU. Blocks brought into the cache
from a multi block read are placed near the end of the LRU
(the LRU end of the LRU). This algorithm was used by oracle.

D. LRU with Touch Count
LRU with touch count is good combination of recency

based algorithm and frequency based algorithm. Oracle was
forced to change its LRU algorithms because of ever-
increasing cache sizes, ever-increasing database sizes, and
ever-increasing concurrency requirements.

1) Multiple LRUs and Mid Point Insertion

Oracle uses perhaps 32 or 64 LRUs. So when it is said
the cache was entirely replaced, technically this is not true.

Only the buffers associated with a specific LRU are entirely
replaced.

The mid-point works like a cache protection mechanism.
Oracle may need to bring in a large number of blocks from a
table, but it does not want to fill the cache with those blocks.

Here’s a situation where ALL or LOTS of buffers in a
table must be brought into the cache. If a block is updated it
must be brought into the cache. But maybe it won’t be touched
again. The midpoint prevents many single-touch changed
blocks from flooding the cache and pushing out popular
buffers (read or writes centric buffers).

2) Touch–Count

Each buffer has been associated with touch count which
is the indicator of popularity, maintained in buffer header.
Theoretically Touch count is incremented when the block is
touched (accessed) but to tackle the related reference properly
parameter _db_aging_touch_time is specified. If the buffer is
touched after the _db_aging_touch_time specified then the
touch count is incremented else not. No latching is used for
touch count in order to avoid possible contention. So, some
incrimination may not occur [7].

Whenever server process does not find a free block to
bring disk block into memory i.e. looking for a free buffer or
database writer (DBWR) process is looking for dirty buffer, it
scans the buffer cache list and moves all the buffer blocks
having touch-count greater than parameter
_db_aging_hot_criteria to Most Recently Used end of the
buffer cache chain and its touch count is reset to zero.

E. In Memory Database
It copies whole database into Ram. It loads the entire

database into memory on start-up, and references all the
database data using known memory addresses.

F. Garbage Collection Technique
Orion and UniSQL use Garbage collection technique for

database buffer cache management. Garbage Collection
technique replaces all unused objects in object buffer.

V. DISCUSSION

LRU is very simple algorithm to implement with very low
overhead. If you have a large number of items that are
referenced essentially randomly, or some items are accessed
slightly more often than others, or items are typically
referenced in batches (i.e. item A is accessed many times over
a short period, and then not at all), then an LRU cache eviction
scheme will likely be better. Buffers repeatedly touched
remained in the cache.

In LRU arbitrary bursts of accesses to an infrequently
accessed dataset that pollutes the cache by replacing the more
frequently used entries. A large index scan or full table scan
would completely fill the cache, replaced all the popular
buffers.

LFU works well if you have a small number of items that
are referenced very frequently, and a large number of items
that are referenced infrequently.

www.manaraa.com

Priti M. Tailor et al , International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 409-413

© 2015-19, IJARCS All Rights Reserved 412

LFU suffers from the problems like count overflow,
certain pages building up high reference counts and never
being replaced even though it will not be used again for a
decent amount of time. This leaves other blocks which may
actually be used more frequently to be replaced.

LFU can replace new pages just entered into cache which
have lower reference count which are going to be referred in
near future.

In modified LRU full table scan will not replace all
cached buffers but a large index range scan (which can read
many B*-Tree leaf blocks) can be single block reads, which
can replace all the popular buffers.

In LRU with touch count, the buffer blocks which are
really accessed frequently will remain in buffer cache list for a
longer period of time. Because of this the page with initial
heavy access and no access after word will not occupy buffer
cache chain un-necessarily.

Before reading a data block into the cache, the database
user process must first find a free buffer. The process searches
the LRU list, starting at the least recently used end of the list.
The process searches either until it finds a free buffer or until it
has searched the threshold limit of buffers. This involves
scanning of LRU list, instead of this some free buffers list can
be maintained.

In LRU with touch count, LRU list contain pinned
buffers, dirty buffers until it is moved to write list, and unused
buffers. If LRU list is divided into two separate list Used and
unused buffers list, then searching time for finding free buffers
to bring new data block in memory can be avoided.

In Memory database refers all the data using known
memory address thereby greatly reducing the amount of
mapping/locating overhead that occurs on every request. This
can have significant performance improvements. It can be a
very good option for read only databases not larger than the
size of RAM.

In Memory database is impractical for most mission
critical databases of a larger size (or have the potential to grow
larger than memory limits). If a failure occurs on the server,
changes that have occurred in memory will be lost, to
compensate this, log transactions to a disk to ensure
recoverability. Risk/performance to be balanced by reducing
the frequency that logging occurs (which increases amount of
data changes that could be lost if failure occurs).

Garbage Collection is simple technique with low overhead
but it has potential risk of replacing objects that are likely to
be referenced again.

LRU is better for large number of items referenced
randomly, in batches, or some items are accessed more than
others. LFU works well when small set of item is referenced
very frequently in comparison with others. Modified LRU will
perform better than LRU in case of full table scan. LRU with
touch count will perform better in case where there is initial
heavy access and no access after words.

VI. CONCLUSION

Disk I/O is the primary performance bottleneck. To reduce
its effect database buffer cache is needed. This work
summarized various database buffer cache management
strategies currently existing. Through the study of previous
buffer management approaches, we found that proven RDBMS
Oracle’s LRU with touch count algorithm outperforms other
strategies because it is good combination of recency and
frequency. Separating a single buffer pool into different buffer
pools according to DBA hints gives performance improvement
without increasing overhead to a great extent. It is preferable to
have separate list for read only pages in buffer and list for dirty
pages in buffer. Modifications to disk are delayed till list of
dirty pages fills up to a specified thresh hold limit. This
improves performance because even if a page is modified many
times in a short period of time, the page has to be written out to
disk only once. There is a need for efficient and better buffer
management strategy.

VII. REFERENCES

[1] Kienzle J, Romanovsky A, “A Framework Based on Design
Patterns for Providing Persistence in Object-Oriented
Programming Languages Software”, IEEE Proceedings–
June 2002, volume 149, Issue 3, 77–85, ISSN 1462-5970.

[2] Elizabeth J. O’Neil, Patrick E. O’Neil, Gerhard Weikum
,”The LRU-K Page Replacement Algorithm For Database
Disk Buffering”, In Proc. Of the 1993 ACM SIGMOD
international conference on Management of data, 297-306,
Washington D.C., USA, August 1993.

[3] Theodore Johnson, Dennis Shasha, “2Q: A Low Overhead
High Performance Buffer Management Replacement
Algorithm”, Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994, 439-450,ISBN:1-55860-153-8.

[4] P Butterworth and A. Otis, J. Stein, “The GemStone object
database management system”,

[5] http://community.versant.com/documentation/reference/db4
o-7.13-flare/net35/Content /implementation
strategies/storage/cachingstorage.htm.

 ACM 34 (10) (1991), 64-
77.

[6] Reiter, Allen, “A Study of Buffer Management Policies For
Data Management Systems”, Technical Summary Report #
1619, Mathematics Research Center, University of
Wisconsin-Madison, March, 1976.

[7] Craig A. Shallahamer “All about Oracle’s Touch Count
Data Block Buffer Cache Algorithm”, original 2001,
version 4a, Jan 5, OraPub, 2004.

[8] Ling Feng, Hongjun Lu, Allan Wong, “A Study of
Database Buffer Management Approaches: Towards the
Development of a Data Mining Based Strategy”, IEEE
International Conference on Systems, Man, and
Cybernetics, 1998, Vol 3, 2715 – 2719, ISSN: 1062-922X.

[9] Yair Wiseman, Song Jiang, “Advanced Operating Systems
and Kernel Applications: Techniques and Technologies”,
Information Science Reference, Hershey , New York.

[10] Song Jiang, Xiaodong Zhang, “LIRS: an efficient low inter-
reference recency set replacement policy to improve buffer
cache performance”, ACM SIGMETRICS Performance
Evaluation Review - Measurement and modeling of
computer systems, June 2002, volume 30, Issue 1, 31-42,
ISSN: 0163-5999.

[11] Sanjay Ghemawat, “The Modified Object Buffer: A Storage
Management Technique for Object-Oriented Databases”,
Ph.D. theses, Massachusetts Institute Of Technology,
September 1995.

[12] D.D. Sleator and R.T. Tarjan, “Amortized efficiency of list
update and paging rules”, Communications of the ACM,
28(2):202-208, 1985.

www.manaraa.com

Priti M. Tailor et al , International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 409-413

© 2015-19, IJARCS All Rights Reserved 413

[13] H.T. Chou and D. Dewitt, “An evaluation of buffer
management strategies for relational database systems”, In
Proc. 11th ACM SIGMOD Conf., pages 127-141,1985.

[14] G.M. Sacco and M. Schkolnick, “Buffer man- agement in
relational database systems”, ACM Transactions on
Database Systems, 11(4):473- 498, 1986.

[15] M. Stonebraker, “Operating system support for database
management”, Communications of the ACM,
24(7):412428, 1981.

[16] Dindoliwala Vaishali J., Morena Rustom D., “
Implementing B+ tree Index for faster access in OODBMS”
, National Seminar on Natural language Processing and
Data Mining (NLPDM – 2012), March 3-4, 2012

www.manaraa.com

Reproduced with permission of copyright owner.
Further reproduction prohibited without permission.

	A Survey of Database Buffer Cache Management Approaches
	Introduction
	Literature Survey
	Literature Survey Findings
	Database Buffer Cache Management Strategies
	LRU
	LFU
	Modified LRU
	LRU with Touch Count
	In Memory Database
	Garbage Collection Technique

	Discussion
	Conclusion
	References

